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Interactive Modeling of Mechanical Objects

Francisca Gil Ureta†, Chelsea Tymms‡, and Denis Zorin§
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Figure 1: Our system enables users to create working, printable mechanisms from a set of disconnected parts by adding pairwise connections
(joints). The model shown here has more than 30 hinge and sphere joints added using our system in about 15 minutes. Original model
“Blocko” by Mikkel_bf.

Abstract
Objects with various types of mechanical joints are among the most commonly built. Joints implement a vocabulary of simple
constrained motions (kinematic pairs) that can be used to build more complex behaviors. Defining physically correct joint
geometry is crucial both for realistic appearance of models during motion, as these are typically the only parts of geometry
that stay in contact, and for fabrication. Direct design of joint geometry often requires more effort than the design of the rest
of the object geometry, as it requires design of components that stay in precise contact, are aligned with other parts, and allow
the desired range of motion. We present an interactive system for creating physically realizable joints with user-controlled
appearance. Our system minimizes or, in most cases, completely eliminates the need for the user to manipulate low-level
geometry of joints. This is achieved by automatically inferring a small number of plausible combinations of joint dimensions,
placement and orientation from part geometry, with the user making the final high-level selection based on object semantic.
Through user studies, we demonstrate that functional results with a satisfying appearance can be obtained quickly by users
with minimal modeling experience, offering a significant improvement in the time required for joint construction, compared to
standard modeling approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry and Object
Modeling—[Geometric algorithms, languages, and systems];

1. Introduction
Mechanical objects are one of the most ubiquitous types of man-
made objects. Many of the objects with which we interact during
the day are part of a mechanism, including doors, faucets, coffee
machines, cars, desks, computers, lamps, and tools. Unsurprisingly,
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creating models of mechanical objects is a common task. With stan-
dard modeling approaches, this task requires considerable effort
and expertise. At the same time, as 3D printing and other tech-
nologies for personalized manufacturing become commonplace,
the number of novice users creating 3D models, and particularly
mechanical models, is rapidly increasing.

Constructing operational mechanical models is often difficult.
For example, many of the models offered by Shapeways, one of the
largest online services for 3D printing, look like mechanical objects
but do not include functional mechanical joints. We conjecture that
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part of the reason for this is that modeling mechanisms, with actual
moving parts, is far more difficult than modeling static shapes. The
goal of our work is to develop a method to simplify and stream-
line the creation of basic mechanisms for users with moderate or
no modeling experience as well as for more advanced users.

Formally, a mechanism is a structure composed of multiple rigid
bodies (parts) interconnected at specific areas (joints). The geom-
etry of the joint limits the relative motion of the connecting parts,
thus defining the behavior of the mechanism [MGD94]. Consider,
for example, the object in Figure 1: the ball-and-socket joints in
the shoulders and the tail allow three-dimensional rotation while
the hinges in the knees and fingers rotate about a single axis. As
we can see, the kinematic behavior of a mechanism is intimately
related to the geometry of the joints. Therefore, to create a good-
quality mechanism, an artist must be able to understand how the
geometry of a joint affects its motion.

In traditional 3D modeling tools, the geometry and motion of
the joints are defined separately. In a typical scenario, the artist first
models the geometry of all the mechanism’s parts as independent
components. Then, the artist creates a system of virtual joints (rig,
or skeleton) which defines the kinematic behavior. Finally, the artist
bounds each part of the model to a joint, with the part inheriting its
relative motion.

We observe several major challenges with applying the tradi-
tional modeling workflow to mechanisms. First, the position, ori-
entation, and proportions of the joint need to be computed by the
artist, who must ensure the joint implements the desired motion.
This is accomplished by a combination of time-consuming exper-
imentation and geometric calculations, which are not always sim-
ple [KLY∗14]. Second, since the behavior of the mechanism can
only be tested after the geometry is created and associated with a
separately-created skeleton, errors are often found late in the pro-
cess; parts that look good statically might intersect or become dis-
connected during motion. And third, finding and fixing these errors
is not a trivial task for complex shapes and may require many iter-
ations.

In this paper, we present an approach to modeling mechanical
objects that addresses these challenges. The two main principles
that we use are (1) integration of the geometry definition with the
rig construction, which defines motion, and (2) inferring the geom-
etry of joints from the geometry of parts semi-automatically, allow-
ing the user to seamlessly explore the space of joint configurations.

The contributions of our work include a semi-automatic tech-
nique to find a set of feasible joint positions, orientations and sizes
for a pair of parts; a user interface design for exploring these config-
urations; and a method for adapting part geometry, when necessary,
to the desired motion ranges.

We demonstrate our approach by converting a number of exam-
ple 3D shapes into functional mechanisms with aesthetically satis-
factory joints. Our evaluation shows that inexperienced users can
efficiently use our interface and that overall performance is signif-
icantly better than what can be achieved with traditional modeling
tools.

2. Related Work
Modern commercial CAD software for designing mechanisms and
assemblies is tailored for professional machine designers and me-

chanical engineers (eg. SolidWorks, SolidEdge, Inventor). To prop-
erly use these systems, the user must have a good understanding of
mechanics and modeling, which makes them unfit for hobbyists
and novice users. In contrast, with our system, a user can create
mechanisms, with physically realizable joints, without having to
manipulate low-level geometry of joints.

The closest work, in terms of goals, is [KLY∗14]. This paper
addresses the problem of creating works-like prototypes of me-
chanical objects. The goal is the physical realization of a particu-
lar functionality defined by high-level functional relations between
parts, with focus on converting these high-level relations to low-
level kinematics. The work is restricted to parts shaped as cuboids
and does not consider user-interaction or aesthetic aspects of joint
placement; this makes it possible to use a minimalistic algorithm
for joint placement, orientating and sizing.

A similar problem, that of creating articulated characters, is
solved by [BBJP12] and [CCA∗12]. These papers describe a
pipeline for converting a character shape (typically, a single-
component organic shape) into an articulated model by automatic
segmentation and joint insertion. Both methods rely, in a funda-
mental way, on placing the joints in the interior of the object and
on the availability of a skeleton or skinning weights to determine
joint size and placement (with orientation of hinges in [BBJP12]
determined manually). Although our targeted output models share
similarities, we target input models consisting of separate parts, as
is typical for mechanical objects, and do not assume a skeleton as
input. We only require specification of pairs of parts to be con-
nected by joints, with no geometric information as input, and focus
on inferring a set of plausible options for joint geometry from part
geometry.

Mechanism Design. A number of papers in graphics are con-
cerned with design methods that facilitate the creation of functional
objects. For instance, [HL15] turns a 2D mechanism into a work-
ing 3D model, but is restricted to planar mechanisms. [KSS∗15]
describes a method for automatically creating 3D-printable con-
nectors; however, they use only rigid rod connectors.

Other works propose methods for designing mechanisms from
a purely functional point of view: [ZXS∗12] is concerned with an
automatic design and placement of driving mechanisms, attached
to an existing articulated character, to match simple motion trajec-
tories created by a user. A related problem is solved in [CTN∗13],
handling a larger space of possible motion trajectories. [TCG∗14]
and [BCT15] present a system for the design and editing of linkage-
based characters, allowing the creation of characters actuated by a
single motor that achieves the desired motion while maintaining
aesthetic appeal. All these methods require an existing virtual me-
chanical character as input, whereas our system creates such a me-
chanical character as the output.

More recently, [MTN∗15] presents a system for the design of
mechanical robots. Their approach uses the skeletal structure of the
robot as input and adds motors at joint locations. The geometry for
the body parts is automatically generated to connect the motors.
The user can’t easily modify the shape of the parts; augmenting the
geometry is allowed, but the user must ensure there is no interfer-
ence during motion. With our system, the user has greater control
of the aesthetics of the model, while never having to manipulate
low-level geometry.
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Figure 2: Six standard kinematic pairs.

Several works, [LOMI11, UIM12, LHAZ15], focus on furniture
design. In particular, [LOMI11] describes a system for furniture
assembly based on grammars, including adding parametrized joints
from a library. The goal of this work is similar to ours, but it focuses
on a narrower domain, which allows the use of grammars and a
higher degree of automation. However, this approach restricts the
possibilities of joint placement and sizing.

[SSL∗14] demonstrates how conceptual sketches can be con-
verted to manufacturable objects by adding the required connectors
and joints based on a database of examples. In principle, this type
of approach could be viewed as the ultimate goal for the problem
we are solving, allowing near-complete automation, but in its cur-
rent form, it requires a large and precisely-annotated collection of
domain-specific examples.

A number of papers, e.g. [MYY∗10] and [XWY∗09], consider
the complementary problem of estimating joint kinematics from
surface geometry. These methods use the geometry of the joint,
already present in the model, to determine the nature of the con-
nections using primitive fitting [MYY∗10] or slippage analysis
[XWY∗09].

Swept Volume. An essential feature of our method is the adapta-
tion of part geometry to allow for desired joint motion, for which
sweeps are required. Many general algorithms exist to compute
swept volumes, such as [AMYBJ06] and more recently [vDH11],
but these are relatively slow. We use an efficient special-case algo-
rithm described in Section 7 to create the sweep envelope, using a
method similar to that of [PPSZ05].

3. Simple Mechanisms and Joints
Mechanical joints between parts are described in terms of kine-
matic pairs of primitives. In this paper, we are primarily concerned
with lower pairs, [DH64], i.e. joints that constrain a point, line, or
plane of one part to a point, line, or plane in another part.

There are six standard kinematic pairs (Figure 2):
1. A revolute pair (hinge) requires two collinear lines in the con-

nected parts, with no motion along these lines; that is, planes on
each part, perpendicular to the aligned lines, maintain contact
with each other. It has one rotational degree of freedom.

2. A spherical joint constrains two points in the connected parts to
have the same location. It has three rotational degrees of free-
dom.

3. A prismatic joint (slider), just as the hinge, requires the align-
ment of two lines in the connected parts and contact between
two planes, but now the planes are parallel to the common line.
It has one translational degree of freedom.

4. A cylindrical joint, like the hinge and slider, requires two
collinear lines in the connected parts, but it does not add plane
constraints. It has two degrees of freedom, one translational and
one rotational, and it can be viewed as a combination of a hinge
and a slider.

5. A planar joint requires that a plane in one part remain in contact
with a plane in the other part. It has three degrees of freedom,
two translational and one rotational.

6. A screw joint requires that helical lines (threads) on two parts
remain aligned; it has one degree of freedom, corresponding to
a mutually constrained translation and rotation.

In this paper, we consider linked assemblies using the first three
pairs on the list (hinge, sphere, and slider), but effectively all except
the screw joint can be handled: construction of a cylindrical joint
is easily reducible to a hinge joint with a free translational axis;
and the plane joint, although rarely used, can be composed by two
sliders and a hinge.

While it would be simple to add the screw joint, we have not
found many examples of its use; this type of joint is primarily used
in linear actuators as a part of more complex mechanisms involving
higher pairs (gears or cams), which we do not consider. The princi-
ples we developed for interactively placing and determining dimen-
sions of the joints can also be applied to more complex joints, such
as gimbal, six-degrees-of-freedom joint, universal joint, etc. All
these joints can typically be decomposed into the primitive joints
described here.

4. Overview
Our approach to modeling mechanical objects is based on several
principles:

• The user specifies only the hierarchy of the parts and the type of
kinematic pair they form; the kinematic skeleton, which defines
part motion, is inferred from the joint type.

• The system identifies part interfaces (regions where the parts
can be connected) and determines plausible joint configurations
(consisting of position, orientation, and dimensions). The user
interaction is mostly reduced to choosing among a small number
of these configuration options and setting ranges of motion.

• The system creates the geometry of the joints and modifies part
geometry when needed.

We describe the user perspective of the workflow in greater detail
in Section 5. A number of algorithms are needed for this workflow;
most are either independent of the type of joint or are easily adapt-
able to different joint types. One key algorithm extracts interfaces
from a pair of parts (Section 6.1); another determines configura-
tions from the interface geometry (Section 6.2). Finally, in Sec-
tion 7, we describe our technique for creating joint geometry and
updating part geometry to make the object physically realizable.

5. Workflow
The overall workflow is shown in Figure 3. To create a joint in
our system, the user starts by selecting two parts of the model and
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Figure 3: User workflow.

specifying the type of mechanical joint that will connect the pair.
Based on the selection, our system calculates valid options for in-
terfaces and joint configurations (position, orientation, and dimen-
sions). The user then selects one of the suggested configurations.
Using this configuration, our system creates a fabricable version of
the design.

Connecting parts. In our system, a part consists of one or mul-
tiple combined surfaces that behave as a rigid body. Parts can be
connected to each other pairwise. When two parts are connected
by a joint, the system automatically adds the needed bones to the
skeleton and attaches the parts to it, defining their relative move-
ment. Thanks to the incrementally constructed skeleton, the user
can immediately assess the behavior of the mechanism.

Suggestions. For a given kinematic pair, our system automatically
computes a set of joint configurations (Figure 3c). Each configura-
tion includes options for position, orientation, and dimensions that
control the kinematic behavior and appearance of the joint. Using
our interface, the user can iterate over all the configuration options
and choose the one that best fits his intended design. When the user
changes an option, our system automatically updates the joint and
skeleton.

Our interface displays a joint using a simplified version of its
geometry (i.e. a proxy), which provides a visual representation of
position, orientation, and size. We find that using a proxy of the
geometry, instead of the full geometry, is better for depicting the
kinematic behavior of the joint. For example, for a hinge, we use
a cylinder that effectively shows rotation axis, position, radius, and
length (see Figure 4a,c).

Controlling motion ranges. Our interface offers the user an op-
tion to specify the bounds of motion and visualize the related swept
volume (Figure 3e-left). This visualization helps the user decide
suitable bounds for the intended mechanism behavior.

After setting the motion bounds, the user can use our system to
remove any intersecting geometry (Section 7). This step is optional
and serves as an additional tool to our system: a user can decide
to execute it at any point during the modeling session and as many
times as required. With this tool, the user can easily carve out com-
plex geometries from connected parts. For example, the lock mech-
anism in Figure 3 needs a hole in one of its parts to fit the cylinder

Figure 4: Joint Proxies. (a) Dragonfly model with joint proxies in
green. (b) Model with actual joint geometry and posed joints. (c-e)
Close-up views of the legs. Original model “Dragonfly fighter” by
Alexis Zephyrian.

of the lock. However, the size of the hole is hard to calculate: the
cylinder sweeps the volume of a torus with a minor radius equal
to the radius of the cylinder, and the major radius depends on the
position of the hinge.

As we show in our user studies (Section 8), calculating bounds
and swept volumes manually is time-consuming and requires non-
trivial modeling proficiency. In contrast, with our tool, even a
novice user can create working joints.

6. Algorithms
Our workflow for modeling mechanisms is supported by a set of
algorithms that calculate the configuration alternatives offered to
the user. These algorithms, with minor variations, are the same for
all joint types.

The core of our suggestion algorithm is based on three observa-
tions. First, joints are often located in regions proximal to both parts
(the parts’s interfaces). Second, the motion defined by the joint is
usually aligned to features of the interface. And third, the overall
size of the joint must fit the space defined by these regions. All of
these observations are somewhat ambiguous, and typically a num-
ber of possibilities exist, with the best choice related to the seman-
tics of the object.

An interface is a region of a part where other components can
be connected. In the case of polyhedral parts, it is natural to use
polyhedron facets as our elementary unit for interfaces. Following

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

https://www.tinkercad.com/things/43X5XZTgp5O
https://www.tinkercad.com/users/2hn45BWOE1U-alexis-zephyrian


F. Gil Ureta & C. Tymms & D. Zorin / Interactive Modeling of Mechanical Objects

Figure 5: Pipeline overview. (a) sharp features samples (green) and surface samples (red); (b) colored proximity weight; (c) partition
of interfaces, each with a unique color, and example of an interface pair selected by the user (in red); (d) points, directions, and extents
calculated with our algorithm; (e) joint configuration given the point, direction and extents highlighted in red.

the three observations mentioned above, we can find interface can-
didates, for example, by identifying faces on both parts that are
close to each other, setting the joint orientation with respect to the
normals of the facets, and deciding the joint size from the face
size. This approach can easily be generalized to parts consisting of
smooth patches bounded by sharp curves. However, this approach
works poorly for all but the simplest shapes: elements like small
details, protruding sharp parts, rounded edges, curvature variation,
and position or normal noise all make this simple approach unus-
able.

Our concept of interfaces generalizes facets. We define an inter-
face as a set of points sampled from mesh triangles and “sharp”
edges (cf. [GSMCO09]). Each triangle sample is assigned a nor-
mal, and each edge sample a direction. Intuitively, the interface
is a face-like connected subset of the surface of a part, that has
a boundary defined by rapid changes of normal direction, and is
close to the other part. The choice of interfaces is described more
precisely below.

Pipeline overview. The input to our suggestion algorithm is a pair
of parts and a joint type. The algorithm proceeds in several steps:

• The surface and sharp features of each part are sampled.
• Sample sets are partitioned into interface regions (possibly mul-

tiple regions per part, as different areas in a pair of parts may be
in proximity).
• For a given interface pair, a set of attributes (positions, orienta-

tion axes, and extents) that characterize the region is computed.
• Using these attributes, a set of joint configuration alternatives is

computed and scored to determine the order of presentation to
the user.

Sampling. As input meshes may have highly nonuniform triangle
size and shape, we start by resampling the surface uniformly, with
additional samples on sharp-edges. Our sampling method is based
on the Poisson disk algorithm proposed by [BWWM10] and is ex-
tended to edges. This algorithm first computes a large set, Si, of
random points uniformly distributed on the surface. Then, it draws
Poisson disk samples from Si, generating the set S ⊂ Si. We refer
the reader to [BWWM10] for implementation details. Here we only
state that we can efficiently draw a Poisson disk sample set S from
a sufficiently large Si.

To compute Si for a part p, our algorithm first triangulates the
mesh and extracts sharp-edges (edges that have sharp dihedral an-
gles or lie on the boundary [GSMCO09]. Then it generates two

Figure 6: Interface extraction. From left to right: iterations 1, 3,
and 6 of BFS in each sample set.

sets of points, ST
i and SE

i , drawn from triangles and edges re-
spectively. To generate ST

i (resp. SE
i ) we repeatedly select a tri-

angle (resp. edge) with probability proportional to its area (resp.
length) and then uniformly sample the selected element. For a tri-
angle, the sample point is defined in barycentric coordinates as
u = 1−

√
ξ1,v = ξ2

√
ξ1, where ξ1,ξ2 are two uniform random

numbers. Likewise for edges, the point is given by u = ξ1. The
union set Si = ST

i ∪ SE
i is passed to the Poisson disk algorithm to

compute the set S (see Figure 5a).
In addition to its position, each point is assigned a normal direc-

tion; for a point drawn from a triangle, we use the surface normal as
normal direction; for a point drawn from a sharp-edge we generate
two samples per point, each with a different normal (correspond-
ing to the normals of the triangles associated with the sharp-edge).
Each edge-point is also assigned an edge-direction, corresponding
to the vector defined by the two vertexes of the edge.

Although we sample each part p individually, we use the same
Poisson disk radius, so the densities of both sample sets are equiv-
alent. Let aA,aB be the surface areas of each part, and N a desired
upper bound on the size of the sample sets; then, the sample radius
r is given by r =

√
(aA +aB)/(Nπ).

6.1. Interface Extraction
We extract interfaces from a sample set S one by one, using a
breadth-first growth for each (see Figure 6). To favor expansion to-
wards regions close the other part, each point is assigned a weight
using the proximity weight function defined below. The first inter-
face is initialized with the sample point with highest weight. Start-
ing points for following interfaces are chosen to be the points with
highest weight, not yet assigned to any existing interface. Our al-
gorithm iteratively expands the interface to neighboring points that
keep the interface relatively flat.

Let us denote the set of points that compose the interface in the
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Figure 7: Schematics for joint models. Our system automatically
calculates values for the position (indicated by a blue cross), part
orientations (red arrows), and part dimensions. Dimensions not in-
cluded in this figure are derived from these main dimensions. Such
is the case of the radius of the ball in the sphere joint, calculated as
a fraction of rB. Complete schematics of the models are included in
the supplementary material.

k-th iteration by Ik. We define the set of “neighboring points” of
that iteration as all the points in S \ Ik at a distance less than 2r
from any point in Ik. To keep the interface planar, our algorithm
accepts a point p only if its normal direction is close to the normal
of the best-fit-plane defined by Ik. We calculate this normal as the
weighted average normal of the points in Ik.

The extraction of interface I ends when no neighboring points
are found that satisfy the plane requirement. The algorithm contin-
ues extracting new interfaces until all points have been processed
and the whole surface is segmented.

Proximity weights. Motivated by the observation that joints are
typically located in regions close to both parts, we weight points
of a sample set by their distance to the other set. Due to their good
localization properties, we choose these weights to have a similar
form as weights used in moving-least-squares constructions. For a
point p ∈ SA, its weight with respect to SB is given by:

wd(p,SA,SB) = exp(−c1‖p−q(p,SB)‖2/amin), (1)

amin = πr2 min{|SA|, |SB|} (2)

where q(p,S) corresponds to the closest point on set S, and r is the
sampling radius. The parameter c1 controls the falloff of the weight
function. All the examples in this paper use c1 = 100.

To accelerate the subsequent stages, we remove most of the re-
sulting interfaces for each pair of parts from consideration, keeping
only the ones that have significant weight and size: given an inter-
face set I ∈ S we use a threshold on the total weight of its points
(10% of the total weight of points in S) and a size threshold (1% of
the area of S).

6.2. Computing Positions, Axes and Extents
For a pair of interfaces, our algorithm computes a set of positions,
axes, and extents that are used to configure the parameters of the
joint (see schematics in Figure 7). The sets of points, axes, and
extents we use are based on observations of a gallery of joints used
in current manufacturing (see examples in Figure 8).

Figure 8: Gallery of mechanisms from online repositories: (a) light
switch with slider joint, (b) box with hinge joint, (c) drawer with
sliding joint, (d) door hinge joint, (e) watch band with multiple
hinge joints, (f) faucet with sphere joint, (g) toy, ModiBot, with mul-
tiple sphere joints, and (h) dream-catcher with sphere joints.

Figure 9: Positions and axes calculated by our system.

Positions. A position is a possible location of the center of a joint.
We extract two types of positions, surface points and bisecting
points, according to their distance to the interface planes. Surface
points lie on the plane defined by the interface and are used to po-
sition the joint inside a part (see the slider joint in Figure 8a). Bi-
secting points are equidistant to both interfaces and are particularly
relevant to symmetric joint models (see hinge joint in Figure 8d).

We compute the following alternatives for positions (Figure 9):

• Points p0 and p1 lie on the interface and correspond to its un-
weighted and weighted center of mass respectively (eg. Figure
8a,c,f,h).

• Points p2 and p3 lie in the bisecting plane and correspond to the
intersection of the plane and the line defined by p0 (resp. p1) and
the interface normal (eg. Figure 8e,g).

• Point c corresponds to the weighted center of mass of both inter-
faces and usually lies on the bisecting plane (eg. Figure 8b,d).

Axes. An axis is used to orient a natural body-aligned axis of a
joint (e.g., the rotation axis of a hinge, or the slider direction). An
axis can be tangent or perpendicular to the interface average plane.
For example, in the slider model in Figure 7, the axis x1 is perpen-
dicular to the interface while x2 is tangent.

We use the following directions for a given interface pair:

• Best-fit-plane normal of each interface: for axes perpendicular
to an interface (e.g., sphere joints on Figure 8f,g, and axis x1 of
slider joints on Figure 8a,c));

• Cross product between best-fit-plane normals: for axes tangent to
both interfaces. This is particularly useful when the initial pose is
already rotated, as it indicates the preferred rotational axis (e.g.,
Figure 8 b,d,e,g).

• Sharp-edge directions: for axes tangent to one of the interfaces
(e.g., travel axis x2 for slider joints on Figure 8a,c).

c© 2016 The Author(s)
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Figure 10: Extents Measure. Interface IA represents an interface
with a sharp bound, and IB one with soft bounds. For a given extent,
distances are measured (a) along a line, (b) to a line, or (c) to a
point, and used to obtain representative values for the extent.

To compute salient sharp-edge directions, we use histogram-
based clusters of directions. Using the edge direction, our method
projects all sample edge points to a 3D cube grid. It then picks two
cells (bins) with the highest total weights. When no relevant bins
are found, it uses PCA to compute two principal directions for the
interface. We find this approach adequate, since we need only a
relatively coarse resolution.

Extents. An extent is a range of distances given by a lower and up-
per bound. We use the following types of extents (see Figure 10):
linear, radial and spherical radial. For example, models for sliding
joints include mostly linear extents (e.g., Figure 8a,c); hinges in-
clude linear and radial extents (Figure 8b,d,e); and ball-and-sockets
include mostly spherical radial extents (e.g., Figure 8f,g,h).

A linear extent is associated with an axis a and a position p, and
is obtained by projecting all interface points to a line l in direction
a passing through p and measuring the distances to p.

A radial extent is also associated with an (axis, position) pair,
but the distances from sample points to the line l are measured.

A spherical radial extent is obtained from distances from sample
points to a position p.

For each set of distances, we compute the ranges that cover the
68%, 95% and 99% of the interface total weight, with distances
weighted by the weight of corresponding points. We also obtain
the extreme points, min/max, along the line.

Interfaces in which weights are similar (see IA in Figure 10),
have very similar 99% and maximum ranges. In contrast, interfaces
where the weights decay slowly (e.g., IB) present a significant dif-
ference between the 99% range and the extreme options. In the first
case, the extreme range often offers a better solution, working as a
“snap to border” option. In the second case, the extreme range is
not representative of the interface (having a low weight). To offer
appropriate solutions to the user, our algorithm evaluates the dif-
ference between the 99% range and the extreme range: if the dif-
ference is smaller than twice the sampling radius, only the extreme
options are offered. Otherwise, the percentage options are used.

The values calculated are used to modify the parameters of the
joint’s model (Figure 7). In most cases, the value of the parameter is
calculated directly from a single extent. However, some parameters
are affected by multiple extents. Such is the case of the number of
knuckles in the hinge joint, as shown in Figure 11. Here the number
of knuckles is an integer, calculated as a relationship between the

Figure 11: Indirect parameters. In the hinge model, the number of
knuckles is calculated as a factor of the ratio between the length
and the radius of the joint.

length and radius.We show the complete parametric models and the
relationships between the attributes in the supplementary material.

To add new models into our system, it is sufficient to specify
how to calculate the parameters in terms of our main dimensions
(see Figure 7). For models with different main dimensions, each
dimension needs only to be classified as linear, radial, or spherical
radial along a pair of position/axes.

6.3. Computing Configuration Alternatives
When the user selects a pair of parts, our system automatically cal-
culates a set of interface pairs (Section 6.1) and alternatives for
positioning, orienting and sizing the joint (Section 6.2). These al-
ternatives are intuitive to the user, as they have a direct relation
to the common 3D manipulation tasks of translating, rotating and
scaling. Before the options are presented to the user, each set of
alternatives is sorted and the option with highest score is used as
default. While position and axis choices are only dependent on the
interface pair, the extents depend on both and so they need to be
computed separately for each (axis,position) combination.

Interface pairs are ranked by the proximity between their points.
For a pair (IA, IB), the weight is given by:

wI(I
A, IB) =

1
|IA||IB| ∑

p∈IA

wd(p, IA, IB) ∑
p∈IB

wd(p, IB, IA) (3)

where wd is defined as in Equation 1.
Similarly, position alternatives are ranked by their proximity to

both interfaces, with the weight of a position p given by:

wp(p, IA, IB) = wd(p, IA, IB)wd(p, IB, IA), (4)

Positions originating from different interfaces may be close; we
consider a position p to be a duplicate if there exists a position q
such that the distance between them is less than a tenth of the sam-
pling radius. Only the position with the highest weight is retained.

Axis alternatives of different types are sorted differently: for tan-
gent axes, we offer first the cross product (if any) and then the
sharp edge directions; for perpendicular axes, we offer the normal
directions. Axes with angular difference of less than 0.1 radians are
viewed as identical.

Extent alternatives are sorted by length, from shortest to longest.
We consider a extent [t1, t2] to be a duplicate if there is another
extent [l1, l2] whose difference between corresponding endpoints is
less than a tenth of the sampling radius. Duplicates are handled by
choosing arbitrarily between the options.

7. Generating Physically Realizable Geometry
Once the user is satisfied with the configuration of the joint, our sys-
tem creates its geometry and connects it to the mechanism. This in-
volves three steps: generating working joint geometry, adding gaps
between the parts, and computing the swept volume to ensure the
parts can move.
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Figure 12: Printable Geometry. Propeller Head model. Geometry
is carved out of the parts to allow joint motion.

Figure 13: Lock model. Our system automatically carves the pur-
ple part to fit the cylinder on the yellow part.

Generating working and printable geometry. Before connect-
ing the geometry to the mechanism, it is necessary to remove any
volume that interferes with the pair’s relative motion (see Fig-
ure 12). Let us denote the joint geometry that will be attached to
part A as JA (resp. JB for part B). To connect JA to A, our algo-
rithm first computes the volume V B traversed by JB (see below) and
carves it off A using Boolean difference. Finally, JA is connected us-
ing Boolean sum. The same operation is done for B, carving off VA
and adding JB, with VA computed for the original JA. Our algorithm
adds a separation between the parts (clearance) by inflating VA and
VB before carving. An appropriate clearance value depends on the
printer’s precision and is therefore provided by the user.

Given the arbitrary shape of the parts, some remaining geometry,
outside the vicinity of the joint, might still interfere with the part’s
movement (e.g., the highlighted cylinder in Figure 13). Because
our tool is meant to be used as part of the modeling process we do
not automatically remove this geometry, but allow the user to run a
sweep analysis at any time during modeling and selectively remove
unneeded regions.

Swept Volume Computation. Several generic algorithms exist to
obtain a swept volume generated by arbitrary transformations of
a mesh over time. We found that the existing code available to us
to compute swept volumes was not robust and was therefore un-
suitable for our system. Thus, we implemented our own simpli-
fied algorithm similar to the method described in [PPSZ05]. Their
method finds characteristic or silhouette points in the direction of
motion at each time step and sweeps them in that direction at the
step intervals, creating a mesh from this set of boundary points.
We tailor this method for the simpler, constant-velocity trajectories
which mechanical objects typically create, e.g. lines, circular arcs,
and helixes. As in most swept volume algorithms, the most com-
putationally demanding aspect of our approach is the use of robust
Boolean operations [ZGZJ16] to identify the inside and outside of
the shapes.

We explain our approach using the case of linear one-dimension
translation. The algorithm first partitions the mesh of the moving
part along the silhouette in the direction of the translational sweep,
separating it into regions of front-facing and back-facing compo-

nents (components whose vertex normals have a positive or nega-
tive dot product with the direction of the sweep). Then, for each
separate patch of connected front-facing or back-facing compo-
nents, we construct the swept volume: two copies of the patch are
created and then translated respectively to the starting and ending
position of the sweep, and the corresponding boundary vertices are
connected. If we take the Boolean union of all patch sweeps and the
original shape, we can create the entire swept volume. However, for
efficiency, we consider only those patches whose sweeps intersect
with the static part. Note that if the starting shape is manifold, then
this method, by construction, produces closed manifold meshes.

This method can be used for other types of one-dimensional pa-
rameterized motion using a simple change in coordinate system.
For example, for the hinge, we remap the circular rotation to a sim-
ple linear translation, mapping the Cartesian coordinates to polar
coordinates relative to the rotation axis. The sweep is created using
the same process described above, with the addition that, in order
to create a smooth curve, multiple vertices are added to interpo-
late between the boundary vertices of each pair of swept patches.
Robust boolean and mesh operations are used to find the union of
the patches, resolve self-intersections, and compute an outer hull of
the resulting mesh. For more complex types of motion with multi-
ple independent degrees of freedom, such as the motion allowed by
a ball-and-socket joint, the sweep must be computed successively
for each degree of freedom: the shape is first swept around one axis,
the resulting shape is swept around the next axis, and that result is
swept along the final axis.

8. Discussion and Results
To evaluate our system, we conducted pilot experiments with
novice users and applied our system to create mechanical objects
of varying complexity. In order to facilitate the evaluation, we im-
plemented our system as a plug-in for Maya 2015 — which we will
release online to support and foster research in this area.

8.1. Pilot Experiments
We conducted the experiments on a MacBook Pro equipped with
a 15-inch screen. The test group consisted of eight subjects: four
Computer Science students and four architects. None of them had
extensive experience with graphics modeling software. Half of
them reported having low to no experience with 3D modeling and
rigging.

Task I. To validate our suggestion-based approach, we asked users
to connect the Lamp model (Figure 14) using our system and to
repeat the task using standard modeling tools present in Maya. For
the standard workflow, we provided participants with parametric
models of the joint’s geometry.

When using our system, the user would choose one of the of-
fered suggestions for position, orientation and dimensions of the
joints, with the possibility of minor adjustments of joint parame-
ters at the end. In the standard modeling trial, the user was free to
use standard tools for translating, rotating and sizing the paramet-
ric model and skeleton. In both cases, participants were allowed to
change the camera viewpoint. The trial was considered completed
when the user determined that the model and skeleton of each joint
“looked correct.” Before the test, participants were briefed on the
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Manipulation Standard Option-based Speedup

Translation 185.1s 36.4s 5.1 x
Rotation 161.3s 25.5s 6.3 x
Scaling 138.5s 85.1s 1.6 x
Camera 613.3s 196.5s 3.1 x

Edit Time 484.9s 146.9s 3.3 x
Total Time 1099.3s 384.0s 2.9 x

Table 1: Average performance on Task 1, for standard and option-
based systems.

kinematics of the joints, and they practiced with both systems until
they felt comfortable with the interface.

To compare the performance of the two systems, we measure the
total completion time and the edit time. Edit time considers the time
spent modifying the configuration of the joint: choosing one of the
alternatives in our system, and translating, rotating and scaling in
the standard system. Total completion time includes the additional
time spent manipulating the viewpoint. For usability comparison,
we use the System Usability Scale (SUS) questionnaire [BKM09].

Results. The results show that with our system users took consid-
erable less time to finish the task, with a speedup of 3.3 times on
edit time and 2.9 times on total time (see Table 1). The improve-
ment derives not only from the time spent directly configuring the
joint but also from the time spent manipulating the camera (speedup
of 3.1 x). Camera changes during the standard trial were common
when the user switched between editing the joint and checking the
overall aspect of the mechanism. For example, the user would zoom
in to change the length of the hinge and then zoom out and orbit to
see how it looked. This behavior was frequent in the standard trial
and subdued in the option-based trial. We conjecture this is due
to needing few different viewpoints to evaluate our options. Ad-
ditionally, changes of previous decisions were more common for
the standard system, most likely due to errors discovered while in-
specting the joint from a new viewpoint. This data supports our
belief that the standard pipeline needs multiple iterations to solve
issues, while our option-based approach solves them in fewer steps.
Furthermore, it is important to point out that most of the resulting

Figure 14: Task I. Lamp model (a) Result using our option-based
system. (b) Results using traditional modeling tools.

Figure 15: Task II. (a) Desk model and close-up with joint proxies;
(b) Results obtained with our option-based system. Model derived
from “Wooden Desk” by Carlos Folch.

joints modeled with the standard system had mismatching geome-
try and skeleton (see Figure 14b), which could cause errors during
animation (parts separate or intersect) and unexpected motion or
collisions in fabricated models.

On the usability questionnaire, the option-based system has an
average score of 86.9 pts on a scale of 0 to 100 pts. According
to [BKM09], this score translates to an adjective rating between
Excellent and Best Imaginable (B in grade scale). In contrast, the
standard system, with an average of 37.8 pts, is qualified as Poor (F
in grade scale).

Task II. This was an informal study to retrieve more feedback on
the perceived accuracy of our options. Participants were asked to
add joints to the Desk model (Figure 15) using our option-based
system.

Results. The feedback from the users indicated that our system
offers good solutions for position, orientation and size. All subjects
agreed that they found alternatives similar to what they wanted and
that the final model looks close to what they had envisioned. They
also agreed that most of the solutions offered made sense and that
they were likely to check all possible options.

8.2. Mechanical Objects
Figures 1,4,12-19 show a range of mechanical objects of varying
complexity with joints modeled using our system. Some included a
large number of joints and long chains (e.g., Figure 1 and 16a),
others contained faces with noise, small details, or intersections
(e.g., Figures 4,16b,c), and others had relatively simple geome-
try with few joints (e.g., Figures 14a,15,19). The models in Fig-
ures 12,13,14,17,18,19 were created from scratch by novice users
with inspiration from real-life mechanisms. The rest were obtained
from online stores, like Shapeways and Turbosquid.

For each object, we used our system to generate, adjust, and im-
plement joint geometry. In cases where the model included non-
operational joints (Figure 16), we removed that geometry before-
hand. Using our system, we were able to create joints that look
similar to the original design. For the Retro Robot model, we man-
ually adjusted the shoulders joint (moved the joints up, and extend
their length). For models with loops (Figures 17,18), it was neces-
sary to break the rig, as Maya’s rig system doesn’t support loops.

To demonstrate that the results are physically realizable models,
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Figure 16: Models with non-operational joints, which are shown in yellow in the first image of each set. Using our system, we were able to
create similar-looking joints. Original models (a) “Retro Robot 1” by Forpost D6, (b) “Dino-Robot” by Ms. McClure, and (c) “Dalek” by
squidinc3d.

we fabricated six of the mechanisms using a B9Creator DLP/SLA
printer with Cherry Red resin, and post-assembled the models. The
printing process tends to cause inflation, and although our mod-
els included a clearance between the parts, the inflation eliminated
it. Therefore, the fabricated parts are in contact, creating friction.
To control the degree of friction, we altered the models’ clearance
values: 0.2mm (high friction) to 0.4mm (low friction). For pre-
assembly printing, other techniques (eg. [CCA∗12]) can be used
to provide friction. Incorporating these additional joint models is
straightforward: the same parameters that configure our ball-and-
socket are used to configure the cage-and-socket (see Figure 20).

Limitations We restricted our implementation to three joint types.
However, the same approach can be applied to other kinematic pairs
or even higher pairs such as gears.

The major limitation of our system is that joint configurations
are calculated using attributes of only two interfaces. While this is
sufficient for many joints, artists sometimes want to match global
attributes of the mechanism. For example, in the Dalek model, an
artist might want to force all joints to have the same radius. Our cur-
rent system can certainly be extended to handle attributes extracted
from other regions, but this would require new shape analysis meth-
ods.

The heuristics built into the system are only as powerful as the
detected interfaces. To properly detect features, a suitable sampling
radius r must be used: details smaller than r are overlooked, while
larger noise might cause an interface to separate. Also, since we
sample only the surface, we might fail to detect proper interfaces
on parts with large intersection volumes. In such cases, user inter-
vention might be required to modify or reposition the parts. Finally,

Figure 17: Bracelet model. (left) Model with joint proxies; (center)
Model with joint geometry; (right) Fabricated mechanisms.

Figure 18: Magic Cube model. (left) Model with joint proxies;
(center) Model with joint geometry; (right-bottom) Fabricated
mechanisms.

Figure 19: Tiny Robot model. (left) Model with joint proxies; (cen-
ter) Model with joint geometry; (right) Fabricated mechanisms.

our algorithm requires parts to be placed in an initial pose that
is allowed by the desired relative motion. Integrating our system
with tools that assist in this task (e.g., [ATF12], Tinkercad, Gravity
Sketch) is left as future work.

Last but not least, we do not take into account physical proper-
ties of produced models, only kinematics. Accounting for physical
effects is important for fabrication applications. One approach for
supporting physical effects would be to combine our method with
stability and strength evaluation [PWLSH13, ZPZ13, BWBSH14,
LSZ∗14] to find, for example, structurally optimal choices in the
parametric space of joint positions and dimensions.
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Figure 20: Lamp model printed using joint model from [CCA∗12].

9. Conclusion
We have presented a system that allows inexperienced users to cre-
ate articulated, physically correct objects easily. The basic approach
of our system, presenting a small set of options to the user for each
operation, proved to work quite well, either providing an immedi-
ate satisfactory answer or a close approximation point which could,
with ease, be adjusted to get the final shape. Our system is based
on a set of carefully selected heuristics that do not require man-
ual or automatic model segmentation, except for partitioning the
model into moving parts. The underlying computations are fairly
simple and do not require an extensive database of sample objects
or complex crowdsourcing and learning, yet they yield, in all cases
we have tried, small sets of choices including several semantically
natural ones.
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